
Hat – The Haskell Tracer
Version 2.00

Users’ Manual

The ART Team

14 June 2002

Contents

1 Introduction

Hat is a source-level tracer for Haskell (the Haskell T racer). It is a tool that gives the user
access to otherwise invisible information about a computation. Thus Hat helps locating errors
in programs. However, it is also useful for understanding how a correct program works,
especially for program maintenance. Hence we avoid the popular name “debugger”. Note
that a profiler, which gives access to information about the time or space behaviour of a
computation, is also a kind of tracer. However, Hat is not intended for that purpose. Hat
measures neither time nor space usage.

Conventional tracers (debuggers) for imperative languages allow the user to step through
the computation, stop at given points and examine variable contents. This tracing method
is unsuitable for a lazy functional language such as Haskell, because its evaluation order is
complex, function arguments are usually unwieldy large unevaluated expressions and generally
computation details do not match the user’s high-level view of functions mapping values to
values.

Hat is an offline tracer: First the specially compiled program runs as normal, except that
additionally a trace is written to file. Second, after the computation has terminated, the trace
is viewed with a number of browsing tools.

Hat can be used for computations that terminate normally, that terminate with an error
message or that are interrupted by the programmer (because they do not terminate).

The trace consists of high-level information about the computation. It describes each
reduction, that is, the replacements of an instance of a left-hand side of an equation by an
instance of its right-hand side, and the relation of the reduction to other reductions.

Because the trace describes the whole computation, it is huge. Hence the programmer uses
tools to selectively view the fragments of the trace that are of interest. Currently Hat includes
four tools – hat-observe, hat-trail, hat-detect, and hat-stack – for that purpose. Each tool
shows fragments of the computation in a particular way, highlighting a specific aspect.

2 Obtaining the Trace of a Computation

To obtain a trace of a computation of a program, the program has to be compiled specially,
using hmake with either nhc98 or ghc, and then run.

Compile the program using hmake and the -hat option; you may want to choose your
compiler as well, e.g. hmake -ghc -hat.

What hmake does is this: all the modules of the program are transformed to tracing versions
with the pre-processor hat-trans. This preprocessor generates a new module (prefixed with
the letter ‘T’) for each original module. The generated modules are compiled and linked using
an ordinary compiler with the extra option -package hat. The hat package contains interface
files and a link-library that are needed by the transformed program.

You can invoke hat-trans and the compiler manually if you wish, but hat-trans generates
and reads its own special kind of module interface files (.hx files) and therefore modules must
be transformed in the same dependency order as normal compilation. Hence, it is much easier
simply to let hmake do all the work.

Note that the hat-trans preprocessor does not insert the complete file paths of the original
source modules into the generated modules. The trace viewers assume that the source modules
are in the same directory as the executable.

2

2.1 Compilation with nhc98

Tracing makes computations use more heap space. As a rough rule of thumb, traced com-
putations require 3 times as much heap space as untraced ones. However, because traced
computations allocate (and discard) much memory, it is useful to choose an even larger heap
size to reduce garbage collection time. The preset default heap size for an untraced program
compiled by nhc98 is 400KB; you will probably want to increase this to at least 2MB. For
example, you can set the heap size at compile (link) time with +CTS -H10m -CTS or for a
specific computation with +RTS -H10m -RTS to a ten megabyte heap.

2.2 Computation

The traced computation behaves exactly like the untraced one, except that it is slower (cur-
rently about 100 times slower in nhc98, 200 times slower in ghc), and additionally writes a
trace to file.

If it seems that the computation is stuck in a loop, then force halting by keying an interrupt
(usually Ctrl-C). After termination of the computation (normal termination or caused by error
or interrupt) you can explore the trace with any of the programs described in the following
sections.

The computation of a program name creates the trace files name.hat, name.hat.bridge
and name.hat.output. The latter is a copy of the whole output of the computation. The
first is the actual trace. It can easily grow to several hundred megabytes. To improve the
runtime of the traced computation you should create the trace file on a local disc, not on a
file system mounted over a network. The trace files are always created in the same directory
as the executable program.

2.3 Trusting

Hat enables you to trace a computation without recording every reduction. You can trust the
function definitions of a module. Then the calls of trusted functions from trusted functions
are not recorded in the trace.

Note that a call of an untrusted function from a trusted function is possible, because an
untrusted function can be passed to a trusted higher-order function. These calls are recorded
in the trace.

For example, you may call the trusted function map with an untrusted function prime:
map prime [2,4]. If this call is from an untrusted function, then the reduction of map prime

[2,4] is recorded in the trace, but not the reductions of the recursive calls map prime [4]

and map prime []. However, the reductions of prime 2 and prime 4 are recorded, because
prime is untrusted.

You should trust modules in whose computations you are not interested. Trusting is
desirable for the following reasons:

• to keep the size of the trace file smaller (main point)

– to save file space

– to avoid unnecessary detail when viewing the trace

• to reduce the runtime of the traced program (slightly)

3

If you want to trust a module, then compile it for tracing as normal but with the extra
option -trusted. (A plain object file compiled without any tracing option cannot be used.)
By default the Prelude and the standard libraries are trusted.

3 Viewing a Trace

Although each tool gives a different view on the trace, they all have some properties in common.

3.1 Arguments in Most Evaluated Form

The tools show function arguments in evaluated form, more precisely: as far evaluated as the
arguments are at the end of the computation. For example, although in a computation the
unevaluated expression (map (+5) [1,2]) might be passed to the function length, the tools
show the function application as length [1+5,2+5] or length [,] if the list elements are
unevaluated.

3.2 Special Expressions

Unevaluated expressions Tools do not usually show non-value subexpressions. The under-
score represents these unevaluated expressions. (The ‘uneval’ option can be set interactively
if you wish to replace underscores with the full representation of the unevaluated expression.)

λ-abstractions A λ-abstraction, as for example \xs-> xs ++ xs, is represented simply by
(\..).

The undefined value ⊥ If the computation is aborted because of a run-time error or
interruption by the user, then evaluation of a redex may have begun, but not yet resulted in
a value. We call the result of such a redex undefined and denote it by ⊥ (| in ASCII form).

A typical case where we obtain ⊥ is when in order to compute the value of a redex the
value of the redex itself is needed. The occurrence of such a situation is called a black hole.
The following example causes a black hole:

a = b + 1

b = a + 1

main = print a

When the program is run, it aborts with an error message saying that a black hole has
been detected. The trace of the computation contains several ⊥’s.

Trusted Expressions The symbol {?} is used to represent an expression that was not
recorded in the trace, because it was trusted.

4

3.3 Combination of Viewing Tools

Each tool gives a unique view of a computation. These views are complementary and it is
productive to use them together. From each of the three tools hat-observe, hat-trail and hat-
detect you can at any time change to any of the other two tools, starting there at exactly the
point of the trace at which you left the other tool. So after using one tool to track a bug to a
certain point you can change to another tool to continue the search or confirm your suspicion.

3.4 The Running Example

The following faulty program is used as example in the description of most viewing tools:

main = let xs :: [Int]

xs = [4*2, 5‘div‘0, 5+6]

in print (head xs, last’ xs)

last’ (x:xs) = last’ xs

last’ [x] = x

4 Hat-Observe

Hat-observe enables you to observe the value of top-level variables, that is, functions and con-
stants. Hat-observe shows all reductions of a variable that occurred in the traced computation.
Thus for a function it shows all the arguments with which the function was called during the
computation together with the respective results.

It is possible to use hat-observe in batch-mode from the command line, but the main form
of use is as an interactive tool. The interactive mode provides more comprehensive facilities
for filtering the output than batch mode.

4.1 Starting & Exiting

To start hat-observe as an interactive tool, simply enter

hat-observe prog[.hat]

at the command line, where prog is the name of the traced program.

4.2 The Help Menu

Enter :h (:help) to obtain a short overview of the commands understood by hat-observe. All
commands begin with a ‘:’, and can be shortened to any prefix of the full name.

4.3 Observing for Beginners: Using the Wizard

If you use hat-observe for the first time, you might want to start by using the observation
wizard. Simply enter the command :observe with no other arguments. The tool will then
ask questions about the reductions you are interested in. Eventually, it will show the resulting
query and start the observation. This way you can quickly learn what queries look like.

5

4.4 Making Simple Observations

Observations of a function are made with the :observe command, or for simplicity, just by
entering the name of the function at the prompt. For instance, enter :observe f, or simply f,
to obtain all reductions of f.

To avoid redundant output, equivalent reductions of the identifier are omitted in the display
(:set unique). You can change this behaviour in order to see all reductions, even identical
ones (:set all). In future there will also be an option to see only the most general reductions.
A reduction of an identifier is considered more general than another if all its arguments on the
left-hand-side are less defined (due to lazy evaluation) and/or if its result on the right-hand-
side is more fully defined.

4.5 Exploring What to Observe

If you forgot the correct spelling of a function identifier you want to observe or you do not know
the program well, you may want to see a list of all function identifiers which can be observed.
With the :info command you can browse the list of all top-level function identifiers which
were used during the computation, and how many times they were used.

4.6 Filtering Reductions

Even when only unique reductions are shown, some observations may still result in an exces-
sively large number of displayed equations. You only want to see those reductions in which
you are particularly interested. There are several ways to decrease the number of reductions
shown.

4.6.1 Non-Recursive Mode

Hat-observe can omit recursive calls of the given function. If all the top-most calls of a function
are correct, then all its recursive calls within the function itself are likely to be correct as well.
If there are any erroneous recursive calls, their incorrect behaviour at least had no effect on
the result of the top most calls. To omit recursive calls of a function, the :set recursive

off command may be used. To see recursive calls again, use :set recursive on.

4.6.2 Observing Calls from a Specific Context

Another way to restrict the number of reductions being observed is by observing only calls
made from within a specific calling function. If you are interested in all calls of map from the
function myMapper, try :observe map in myMapper.

4.6.3 Specifying Reductions with a Pattern

You can significantly reduce the number of observed applications by observing only reductions
that are instances of a given pattern. With a pattern you can specify in which reductions you
are particularly interested.

You can enter a pattern for the whole equation or any prefix of it. A pattern for an equation
consists of a pattern for the left-hand-side followed by a = and a pattern for the result. The =

and result pattern may be omitted, as may any of the trailing argument patterns.

6

If you wish to skip one argument in the pattern, use an underscore. An underscore in a
pattern matches any expression, value, or unevaluated. The bottom symbol | may also be
used in patterns, and matches only unevaluated things.

Examples:

• To see all applications of map where its first argument is foo, enter :observe map foo.
However, to see all applications of map where its second argument is foo, enter :observe
map foo.

• To see all applications of filter using first argument odd and resulting in an empty
list, enter :observe filter odd = [].

Infix patterns are also supported, although the fixity and priority of the operator is not
necessarily known, so always use explicit parentheses around such patterns.

Sugared syntax for strings and lists is supported, e.g. "Hello world!" for a string and
[1,2,42] etc. for lists.

4.6.4 Combination of Filters

Of course, all methods previously described can be mixed with each other, as in the following
examples.

:observe map [1,2,3] in myMapper

:observe filter even (: 1) = | in myFunction

:observe fibiterative = 0

4.7 Verbose Modes

There are several modes determining the relative verbosity of the output. :set uneval on

shows unevaluated expressions in full, rather than abbreviating them to underscores. :set

strSugar off turns off string sugaring, and :set listSugar off turns off sugaring for other
kinds of list: in both cases, the effect is to reveal the explicit cons and nil structures.

4.8 Browsing a List of Reductions

After successfully submitting a query in any of the described ways, the tool searches the given
trace file. Depending on the size of the file and the number of reductions found, the search
may take a considerable time. Progress will be indicated during the scan of the file. After
the scan of the file, additional time might be spent on filtering the most general reductions
matching the given pattern.

The first n (default 10) observed reductions are then displayed. More reductions can be
displayed by pressing the RETURN key. The system indicates the availability of additional
equations by prompting with --more--> instead of the usual command prompt. If more
equations are available but you do not wish to see them, typing anything except the plain
RETURN key will cause you to leave the equation display mode and go back to the normal
prompt.

The number of equations displayed per group can be altered by using the :set group n
command. The default is 10 reductions at a time. The reductions are numbered – this is to
facilitate selection of an equation for use within the other hat tools.

Attention: because hat-observe uses lazy evaluation to determine the list of reductions,
there may be a delay during which more reductions are determined.

7

4.9 Display of Large Expressions

Sometimes expressions may contain very large data structures which clutter the display. In
order to cope with them the cutoff depth of the display can be adjusted. This cutoff value
determines the nesting depth to which nested sub-expressions are printed: any subexpression
beyond this depth is shown as a dark square. The cutoff depth is adjusted using the command
:set cutoff n.

In certain circumstances, you simply want to increase or decrease the cutoff by a small
amount. There are ‘shortcut’ commands :+ n and :- n to increase or decrease the cutoff by
n respectively. If n is omitted, then it is assumed to be one.

A data structure may be infinite. Because an infinite data structure is the result of a finite
computation, it must contain a cycle. The following example demonstrates how such a cycle
is shown.

cyclic = 1:2:3:4:cyclic

main = putStrLn (show (take 5 cyclic))

If you observe cyclic, then you obtain

cyclic = (cyc1 where cyc1 = 1:2:3:4:cyc1)

4.10 Invoking other Viewing Tools

You may eventually find an erroneous reduction. There are several ways in which you can
proceed at this point.

The first way is to start observing functions used in the definition body of the erroneous
function. You will need to check the source code for functions which might have caused the
wrong result. If you suspect a function f to have caused the incorrect behaviour of g, it is a
good idea to try :observe f in g.

Alternatively, you have the choice to use hat-trail on a reduction you have observed.
Use the command :trail n to start a separate instance of hat-trail for equation number
n.

4.11 Quick reference to commands

All the commands that are available in hat-observe are summarised in the following table.

<query> observe the named function/pattern

<RETURN> show more observations (if available)

:observe <query> observe the named function/pattern

:info see a list of all observable functions

:detect <n> start hat-detect on equation <n>

:trail <n> start hat-trail browser on equation <n>

:source <n> show the source application for equation <n>

:Source <n> show the source definition for identifier in eqn <n>

:set show all current mode settings

:set <flag> change one mode setting

<flag> can be: uneval [on|off] show unevaluated expressions in full

8

	Introduction
	Obtaining the Trace of a Computation
	Compilation with nhc98
	Computation
	Trusting

	Viewing a Trace
	Arguments in Most Evaluated Form
	Special Expressions
	Combination of Viewing Tools
	The Running Example

	Hat-Observe
	Starting & Exiting
	The Help Menu
	Observing for Beginners: Using the Wizard
	Making Simple Observations
	Exploring What to Observe
	Filtering Reductions
	Non-Recursive Mode
	Observing Calls from a Specific Context
	Specifying Reductions with a Pattern
	Combination of Filters

	Verbose Modes
	Browsing a List of Reductions
	Display of Large Expressions
	Invoking other Viewing Tools
	Quick reference to commands

